2026/02/04

生成AI黒馬Step 3.5 FlashがAgent時代を高速突破!

生成AI黒馬Step 3.5 FlashがAgent時代を高速突破! のキービジュアル

生成AI黒馬Step 3.5 FlashがAgent時代を高速突破!

  • Step 3.5 Flashは1960億パラメータでもトークンあたり約110億だけを活性化する稀疎MoE構造。
  • 従来の『パラメータ増量』路線と違い、SWA(スライディングウィンドウ注意)で長文処理を高速化。
  • 数学ベンチマークで大規模モデルに匹敵する知能スコアを実現し、Agent向けに最適化された実用性能を提供。

こんにちは!テックブロガーの○○です。2024年のAI業界、まるで2008年のスマホ市場みたいに「タッチスクリーンは必須」って声があちこちで聞こえてきますよね。そんな中、今年の春に登場した中国テック企業・階跃星辰(Step)からの新星、Step 3.5 Flashが「Agent時代の黒馬」として注目を浴びています。なぜ、パラメータが少ないのに高速かつ高精度なのか、そして私たちの仕事や生活にどんなインパクトを与えるのか、一緒に掘り下げてみませんか?

1. Agent時代に求められる“速さ”と“知能”の本質

OpenAIが提唱する5段階モデル(Chatbot → Reasoner → Agent → Innovator → Organization)では、L3のAgentが現在の主流になりつつあります。Chatbot(L1)では「会話が自然であること」さえ満たせば良いですが、Agentになると「タスクを完了させる速度」と「長文・長期コンテキストの処理能力」が命です。実務でAIにコードを書かせたり、数千ページの資料を要約させたりする場面では、ユーザーは「結果が欲しい」だけで、途中の思考過程を見る余裕はありません。

この変化を踏まえると、単にパラメータを増やすだけの従来型アプローチは、まるで法外な燃料費で走るフェラーリのように非効率です。そこで注目したいのが、Step 3.5 Flashが採用した「稀疎MoE(Mixture‑of‑Experts)+SWA(Sliding Window Attention)」という組み合わせです。

2. 稀疎MoEとSWAが実現する“高速・高知能”の仕組み

稀疎MoEで必要なパラメータだけを活性化

MoEは「専門家(Expert)を多数用意し、入力に応じて最適な数だけを呼び出す」方式です。Step 3.5 Flashは総パラメータ1960億のうち、1トークンあたり約110億だけを実際に計算に使います。これにより、計算コストは大幅に削減されながらも、専門家が持つ多様な知識をフルに活かすことができます。

SWAで長文を“選択的に”読む

従来の線形注意(Linear Attention)は長文でも全トークンを均等に処理しますが、SWAは「ウィンドウをスライドさせながら重要部分に集中」します。結果として、256Kトークン規模の文書でも「読むべき箇所」にだけリソースを割り当て、トークン処理速度は最大350 tokens/sに到達。OpenRouterのFastest Modelsランキングでも167 tokens/sで上位にランクインしています。

3. 知能スコアは大規模モデルに匹敵、実務での優位性は?

高速だけでなく、知能面でもStep 3.5 Flashは驚異的です。米国数学コンテスト(AIME 2025)で97.3点、国際数学オリンピックベンチマーク(IMOAnswerBench)で85.4点、ハーバード‑MIT数学コンテスト(HMMT 2025)で96.2点というスコアを叩き出し、同等規模の閉鎖モデルを上回る結果を示しました。

さらに、Parallel Coordinated Reasoning(PaCoRe)という並列協調推論手法を組み合わせると、数百万トークン規模のタスクでも「情報圧縮」しながら高精度回答が可能に。Agentが「タスクを分解・自己修正」できるようになるため、実務での信頼性が格段に向上します。

4. 日本企業が注目すべきポイント

日本の大手SIやスタートアップでも、AIエージェントの導入が加速しています。特に金融・製造・医療分野では「数千件のレポートを瞬時に要約」や「コード自動生成」など、長文・長時間処理が必須です。Step 3.5 Flashのように「高速+高知能」なモデルは、オンプレミスでも比較的軽量に動作できるため、データプライバシーが重視される日本市場でも採用しやすいと言えるでしょう。

また、パラメータが大規模でなくても高性能を実現できる点は、国内のGPUリソースが限られる環境でもコスト削減につながります。実際、国内のAIベンチャーが「ローカルAIエージェント」のプロトタイプにStep 3.5 Flashを組み込んだ事例がすでに報告されており、今後の展開が期待されています。

5. まとめ:Agent時代は“速さと賢さ”の両輪が必須

要点を整理すると、

  • Agentは「結果をすぐに出す」ことが最重要。
  • 稀疎MoEとSWAの組み合わせで、パラメータは抑えつつ高速推論を実現。
  • 数学ベンチマークで大規模モデルに匹敵する知能を保持し、実務タスクでも高信頼性。

ということです。これからのAI活用シーンで「速さ」だけでなく「賢さ」も求められるなら、Step 3.5 Flashのような設計思想は見逃せません。ぜひ、次回のプロジェクトで「Agent向けに最適化されたモデル」の選定基準に加えてみてください。

それでは、また次回のテックニュースでお会いしましょう!

出典: https://www.ifanr.com/1653972